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1. INTRODUCTION AND STATEMENTS OF THE RESULTS

Consider the entire function

f (*)= :
�

k=0

ak*k

(k!)\ (* # C, a0=1, \>1�2) (1.1)

with complex, in general, coefficients. Assume that

Cf # :
�

k=0

|ak |2<� (1.2)

and put

pn (*)# :
n

k=0

ak*k

(k!)\ , and qn #_ :
�

k=n+1

|ak | 2&
1�2

(n<�).

Our main problem is: If qn is small, how close are the zeros of pn to those
of f ? The variation of the zeros of general analytic functions under pertur-
bations was investigated, in particular, by P. Rosenbloom [7]. He estab-
lished the perturbation result that provides the existence of a zero of a per-
turbed function in a given domain. In the present paper a new approach to
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the problem is proposed. It is based on recent estimates for the norm of the
resolvent of a Hilbert�Schmidt operator.

Note that due to the Schwarz inequality, relation (1.2) implies

| f (*)|2�Cf :
�

k=0

|*| 2k

(k!)2\�Cf e |*|2.

In order to formulate the result set

wn=`(2\)&1+ :
n

k=1

|ak |2&|zk ( pn)|&2,

where `( . ) is the Riemann Zeta function, zk ( pn) (k=1, 2, ..., n) are the
zeros of pn taken with their multiplicities. Since a0=1, zk ( pn){0
(k=1, 2, ..., n).

The aim of the present paper is to prove the following

Theorem 1.1. Under condition (1.2), all the zeros of f are in the set

.
n

j=0

0j ,

where

00=[z # C : qn - 2 |z| exp[wn |z|2]�1]

and

0j={z # C : qn - 2 |z&1
j ( pn)&z&1| &1 exp _ wn

|z&1
j ( pn)&z&1|2&�1=

( j=1, ..., n).

All the proofs are presented in the next section.
Let now ak , k=1, 2, ..., be real. Then as it is proven below, the

inequality

wn�v( pn)# :
n

k=2

a2
k+`(2\)&1+a221&\ (1.3)

is valid. So in the case of real coefficients we can replace wn everywhere
below by the easily calculated quantity v( pn).
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We also will prove the following

Theorem 1.2. Let condition (1.2) be fulfilled. In addition, let �(qn , wn)
be the unique positive (simple) root of the equation

qn - 2 x&1 exp _wn

x2&=1. (1.4)

Then any zero z( f ) of f either satisfies the inequality

|z( f )|�
1

�(qn , wn)
, (1.5)

or there is a zero z( pn) of pn , such that

|z( pn)&z( f )|��(qn , wn) |z( pn) z( f )|. (1.6)

Further, relation (1.6) yields

|z( pn)&z( f )|��(qn , wn)( |z( pn)&z( f )|+|z( pn)| ) |z( pn)|.

Consequently,

|z( pn)&z( f )| (1&�(qn , wn) |z( pn)| )��(qn , wn) |z( pn)|2.

Hence, we get

Corollary 1.3. Under the conditions (1.2) and

�(qn , wn) max
k=1, ..., n

|zk ( pn)|<1, (1.7)

any z( f ) either satisfies the inequality |z( f )|>1��(qn , wn), or there is a
z( pn), such that

|z( pn)&z( f )|�
�(qn , wn) |z( pn)|2

1&�(qn , wn) |z( pn)|
�

|z( pn)|
1&�(qn , wn) |z( pn)|

. (1.8)

Furthermore, relation (1.6) gives

|z( pn)|&|z( f )|��(qn , wn) |z( f )| |z( pn)|.

Hence,

|z( f )|�(�(qn , wn) |z( pn)|+1)&1 |z( pn)|.

This inequality yields the following result
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Corollary 1.4. For a positive number R, let the relation

R1 #
R

�(qn , wn) min
K

|zk ( pn)|+1
<�&1 (qn , wn)

hold. In addition, let pn have no zeros in the circle 0(R)=[z # C : |z|�R].
Then f has no zeros in the ring

[z # C : R1�|z|��&1 (qn , wn)].

Below we will prove the inequality

�(qn , wn)�- 2wn #&1
n , (1.9)

where

#n=ln(1�2+- 1�4+wn �q2
n ).

Due to (1.3) everywhere above we can replace �(qn , wn) by the easily
calculated quantity - 2v( pn) #&1

n , if pn is real.

2. PROOFS

Consider the entire function

h(*)= :
�

k=0

bk*k

(k!)\ (* # C, b0=1, \>1�2)

with complex, in general, coefficients, under the assumption

Ch # :
�

k=0

|bk |2<�. (2.1)

Put

q#_ :
�

k=1

|ak&bk | 2&
1�2

.

Let l2 be the Hilbert space of number sequences with the norm

&x&=_ :
�

k=1

|xk | 2&
1�2

(x=(xk) # l2).

69ZEROS OF ENTIRE FUNCTIONS



Introduce in l2 operators A and B by virtue of the infinite matrices

&a1 &a2 &a3 &a4 } } }

1�2\ 0 0 0 } } }

A=\ 0 1�3\ 0 0 } } } +0 0 1�4\ 0 } } }

} } } } } } }

and

&b1 &b2 &b3 &b4 } } }

1�2\ 0 0 0 } } }

A=\ 0 1�2\ 0 0 } } }+ . (2.2)

0 0 1�4\ 0 } } }

} } } } } } }

In addition, consider the n_n matrix

&a1 &a2 &a3 } } } &an&1 &an

1�2\ 0 0 } } } 0 0

An=\ 0 1�3\ 0 } } } 0 0 + .
} } } } } } }

0 0 0 } } } 1�n\ 0

}

The direct calculations show that pn (*)=det(Un&*An), where In is the
unit n_n-matrix. So the eigenvalues *k (An) of An taken with their multi-
plicities, satisfy the relations *k (An)=z&1

k ( pn) (k=1, ..., n). In other words

_(An)=[+ # C : +=z&1
k ( pn), k=1, ..., n].

Here and below _(A) denotes the spectrum of an operator A. Denote by
A� n the operator in l2 presented by matrix An . That is, A� n=An �0. Clearly,
operators A� n converge in the operator norm of l2 to A and

_(A� n)=_(An) _ 0=[+ # C : +=z&1
k ( pn), k=1, ..., n] _ 0.
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Thanks to the continuity of isolated eigenvalues (Kato [4, p. 213]), for any
finite k we have

*k (An) � *k (A) # _(A) as n � �.

Due to the continuous dependence of zeros of entire functions on its
coefficients, zk ( pn) � zk ( f ) as n � �. Therefore,

_(A)=[+ # C : +=z&1
k ( f ), k=1, 2, ...] _ 0.

Similarly,

_(B)=[+ # C : +=z&1
k (h), k=1, 2, ..., ] _ 0,

where zk (h), k=1, 2, ..., are the zeros of h with their multiplicities.
Furthermore, it is easy to see that &A&B&�q. Let I be the unit

operator in l2. Obviously,

(I&zA)&1&(I&zB)&1

=z(I&zA)&1 (A&B)(I&zB)&1 (z&1 � _(A) _ _(B)).

Hence,

&(I&zA)&1&�&(I&zB)&1&+q |z| &(I&zB)&1& &(I&zA)&1&

=&(I&zB)&1&+q &(z&1I&B)&1& &(I&zA)&1&.

So, if

q &(z&1I&B)&1&<1,

then

&(I&zA)&1&�&(I&zB)&1& (1&q &(z&1I&B)&1&)&1.

Consequently, the operator

(Iz&1&A)&1=z(I&zA)&1

is bounded and thus z&1 � _(A). Hence, it follows that for any zero
z( f ){�, one can write

q &(z&1 ( f ) I&B)&1&�1. (2.3)

Furthermore, assume that for any regular *,

&(*I&B)&1&�G(\&1 (B, *)), (2.4)
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where G(x) (x�0) is a continuous scalar-valued function positive and
increasing on [0, �) with the property G(0)=0, and \(B, *) is the distance
between * and _(B). If the set of all zeros of h is infinite, then by (2.4) for
any regular point of B, there is a zero z(h), such that

&(*I&B)&1&�G( |*&z&1 (h)|&1).

If the set of all zeros of h is finite with ;(h)#maxk |zk (h)|, then *=0 is an
isolated point of the spectrum of B and under the inequality
|*|�1�(2;(h)), we have \(B, *)=|*|. Thus by virtue of relation (2.4), it
can be written

&(*I&B)&1&�G( |*|&1).

Now according to (2.3) we get the following result.

Lemma 2.1. Under conditions (1.2), (2.1), (2.4) any z( f ) either satisfies
the inequality

G( |z( f )| )g�1, (2.5)

or there is a z(h), such that

qG( |z&1 (h)&z&1 ( f )|&1)�1. (2.6)

Corollary 2.2. Under conditions (1.2), (2.1), (2.4), let r(q) be the
unique positive root of the scaler equation

qG(1�y)=1. (2.7)

Then any z( f ), either satisfies the inequality |z( f )|�r&1 (q), or there is z(h),
such that

|z&1 (h)&z&1 ( f )|�r(q).

Indeed, since G increases, this result follows from (2.5), (2.6), and (2.7).

Lemma 2.3. Under conditions (1.2), (2.1), and (2.4) any zero z( f ) of f,
either satisfies the inequality

- 2 q |z( f )| exp[w(h) |z( f )|2]�1,

or there is a zero z(h) of h, such that

- 2 q |z&1 (h)&z&1 ( f )|&1 exp[w(h) |z&1 (h)&z&1 ( f )|&2]�1,
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where

w(h)= :
�

k=1

|bk | 2&|z&1
k (h)| 2+`(2\)&1.

Proof. We apply the following result (Gil' [1, p. 53]). Let B be an
arbitrary Hilbert�Schmidt operator. Then

&(B&I*)&1&� :
�

k=0

gk (B)

- k! \k+1 (B, *)
for all regular *,

where

g(B)=\N2 (B)& :
�

k=1

|*k (B)|2+
1�2

.

Here *k (B), k=1, 2, ..., are the eigenvalues of B with their multiplicities
and N(B) is the Hilbert�Schmidt norm of B, i.e., N2 (B)=Trace(BB*). By
the Schwarz inequality,

_ :
�

k=0

gk (B)

- k! \k+1 (B, *)&
2

=_ :
�

k=0

gk (B)(- 2)k

(- 2)k
- k! \k+1 (B, *)&

2

�2\&2 (B, *) exp _ 2gk (B)
\2 (B, *)& .

Thus, for an arbitrary Hilbert�Schmidt operator B,

&(B&I*)&1&�- 2 \&1 (B, *) exp _ g2 (B)
\2 (B, *)& (2.8)

In the considered case (2.2), we have

N2 (B)= :
�

k=1

|bk |2+k&2\&1<�.

Therefore

g2 (B)=`(2\)&1+ :
�

k=1

|bk | 2&|z&1
k (h)| 2=w(h).
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Thus (2.8) yields

&(B&*I )&1&�- 2 \&1 (B, *) exp _ w(h)
\2 (B, *)& .

Now the required result is due to Lemma 2.1. K

Proof of Theorem 1.1. Put bk=0 for k>n and bk=ak for k�n. Then
h(z)= pn (z), q=qn and w(h)=wn . Now Lemma 2.3 implies the required
result. K

Proof of Inequality (1.3). Let the coefficient of pn be real. Since

:
n

k=1

|z&1
k ( pn)|2= :

n

k=1

|*k (B)|2� :
n

k=1

*2
k(B)=Trace B2

and

Trace B2=a2
1&a221&\,

it can be written

w( pn)=g2 (B)�`(2\)&1+ :
n

k=1

a2
k&a2

1+a221&\

= :
n

k=2

a2
k+`(2\)&1+a2 21&\=v( pn),

as claimed. K

The assertion of Theorem 1.2 follows from Corollary 2.2 and inequality
(2.8).

Proof of Inequality (1.9). Equation (1.4) is equivalent to

2q2
nx&2 exp _2wn

x2 &=1.

Substitute in (1.4) the equality y=2wn x&2. Then

wn

q2
n

= ye y.
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Since z�ez&1(z�0), the relation

wn

q2
n

�e2y&e y

holds. Consequently, e y�r1, 2 , where r1, 2 are the roots of the polynomial

z2&z&
wn

q2
n

.

Hence, y�#n . This proves inequality (1.9). K

3. EXAMPLE

Consider the function

f (z)=c0+c1z+c2z2+l1e&zh1+l2 e&zh2 (0�h1 , h2=const<1)

with real coefficients c0 , c1 , c2 , l1 , l2 . As it is well known, such
quasipolynomials play an essential role in the theory of differential-dif-
ference equations; cf. Hale [3], Kolmanovskii and Nosov [6], and
Kolmanovskii and Myshkis [5]. Usually, stability conditions for
quasipolynomials are investigated. But for many applications, estimates for
the zeros of quasipolynomials are very important, e.g., Gil' [2, Chap. 9]
and references therein. Theorem 1.1 allows us to derive estimates for the
roots of quasipolynomials.

Without any loss of generality, assume that c0+l1+l2=1. We have

f (z)=1+(c1&l1 h1&l2h2) z+z2 (2c2+l1h2
1+l2 h2

2)�2

+ :
�

k=3

zk[l1 (&h1)k+l2 (&h2)k](k!)&1. (3.1)

Rewrite this function in the form (1.1) with \=1, and

ak=(&1)k [l1hk
1+l2hk

2] (k�3), a1=c1&l1h1&l2h2 ,

a2=2c2+l1h2
1+l2h2

2 .

Put

p2 (*)=1+a1 z+a2z2�2. (3.2)
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We have

q2
2= :

�

k=3

l2
1h2k

1 +l2h2k
2 =l2

1h6
1(1&h2

1)&1+l2
2h6

2(1&h2
2)&1

and v( p2)=a2
2+a2+`(2)&1. So due to Theorem 1.1 and relation (1.3), we

can assert that all the zeros of f are in the set �2
j=0 0j , where

00=[z # C : q2 - 2 |z| exp[v( p2) |z| 2]�1]

and

0 j={z # C : q2 - 2 |z&1
j ( p2)&z&1|&1

exp _ v( p2)
|z&1

j ( p2)&z&1| 2&�1= ( j=1, 2).

Besides, z1 ( p2), z2 ( p2) are the roots of polynomial (3.2).
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