Approximations of Zeros of Entire Functions by Zeros of Polynomials

M. I. Gil'
Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
E-mail: gilmi@black.bgu.ac.il
Communicated by Manfred v. Golitschek

Received March 17, 1999; accepted in revised form January 31, 2000; published online August 30, 2000

Approximations of entire functions by polynomials are considered. Residual bounds for zeros of entire functions are derived. © 2000 Academic Press
Key Words: entire functions; zeros; approximations by polynomials.

1. INTRODUCTION AND STATEMENTS OF THE RESULTS

Consider the entire function

$$
\begin{equation*}
f(\lambda)=\sum_{k=0}^{\infty} \frac{a_{k} \lambda^{k}}{(k!)^{\rho}} \quad\left(\lambda \in \mathbf{C}, a_{0}=1, \rho>1 / 2\right) \tag{1.1}
\end{equation*}
$$

with complex, in general, coefficients. Assume that

$$
\begin{equation*}
C_{f} \equiv \sum_{k=0}^{\infty}\left|a_{k}\right|^{2}<\infty \tag{1.2}
\end{equation*}
$$

and put

$$
p_{n}(\lambda) \equiv \sum_{k=0}^{n} \frac{a_{k} \lambda^{k}}{(k!)^{\rho}}, \quad \text { and } \quad q_{n} \equiv\left[\sum_{k=n+1}^{\infty}\left|a_{k}\right|^{2}\right]^{1 / 2} \quad(n<\infty) .
$$

Our main problem is: If q_{n} is small, how close are the zeros of p_{n} to those of f ? The variation of the zeros of general analytic functions under perturbations was investigated, in particular, by P. Rosenbloom [7]. He established the perturbation result that provides the existence of a zero of a perturbed function in a given domain. In the present paper a new approach to
the problem is proposed. It is based on recent estimates for the norm of the resolvent of a Hilbert-Schmidt operator.

Note that due to the Schwarz inequality, relation (1.2) implies

$$
|f(\lambda)|^{2} \leqslant C_{f} \sum_{k=0}^{\infty} \frac{|\lambda|^{2 k}}{(k!)^{2 \rho}} \leqslant C_{f} e^{|\lambda|^{2}}
$$

In order to formulate the result set

$$
w_{n}=\zeta(2 \rho)-1+\sum_{k=1}^{n}\left|a_{k}\right|^{2}-\left|z_{k}\left(p_{n}\right)\right|^{-2},
$$

where $\zeta($.$) is the Riemann Zeta function, z_{k}\left(p_{n}\right)(k=1,2, \ldots, n)$ are the zeros of p_{n} taken with their multiplicities. Since $a_{0}=1, z_{k}\left(p_{n}\right) \neq 0$ $(k=1,2, \ldots, n)$.

The aim of the present paper is to prove the following

Theorem 1.1. Under condition (1.2), all the zeros of f are in the set

$$
\bigcup_{j=0}^{n} \Omega_{j},
$$

where

$$
\Omega_{0}=\left\{z \in \mathbf{C}: q_{n} \sqrt{2}|z| \exp \left[w_{n}|z|^{2}\right] \geqslant 1\right\}
$$

and

$$
\begin{aligned}
& \Omega_{j}=\left\{z \in \mathbf{C}: q_{n} \sqrt{2}\left|z_{j}^{-1}\left(p_{n}\right)-z^{-1}\right|^{-1} \exp \left[\frac{w_{n}}{\left|z_{j}^{-1}\left(p_{n}\right)-z^{-1}\right|^{2}}\right] \geqslant 1\right\} \\
& (j=1, \ldots, n) .
\end{aligned}
$$

All the proofs are presented in the next section.
Let now $a_{k}, k=1,2, \ldots$, be real. Then as it is proven below, the inequality

$$
\begin{equation*}
w_{n} \leqslant v\left(p_{n}\right) \equiv \sum_{k=2}^{n} a_{k}^{2}+\zeta(2 \rho)-1+a_{2} 2^{1-\rho} \tag{1.3}
\end{equation*}
$$

is valid. So in the case of real coefficients we can replace w_{n} everywhere below by the easily calculated quantity $v\left(p_{n}\right)$.

We also will prove the following
Theorem 1.2. Let condition (1.2) be fulfilled. In addition, let $\psi\left(q_{n}, w_{n}\right)$ be the unique positive (simple) root of the equation

$$
\begin{equation*}
q_{n} \sqrt{2} x^{-1} \exp \left[\frac{w_{n}}{x^{2}}\right]=1 \tag{1.4}
\end{equation*}
$$

Then any zero $z(f)$ of f either satisfies the inequality

$$
\begin{equation*}
|z(f)| \geqslant \frac{1}{\psi\left(q_{n}, w_{n}\right)}, \tag{1.5}
\end{equation*}
$$

or there is a zero $z\left(p_{n}\right)$ of p_{n}, such that

$$
\begin{equation*}
\left|z\left(p_{n}\right)-z(f)\right| \leqslant \psi\left(q_{n}, w_{n}\right)\left|z\left(p_{n}\right) z(f)\right| . \tag{1.6}
\end{equation*}
$$

Further, relation (1.6) yields

$$
\left|z\left(p_{n}\right)-z(f)\right| \leqslant \psi\left(q_{n}, w_{n}\right)\left(\left|z\left(p_{n}\right)-z(f)\right|+\left|z\left(p_{n}\right)\right|\right)\left|z\left(p_{n}\right)\right| .
$$

Consequently,

$$
\left|z\left(p_{n}\right)-z(f)\right|\left(1-\psi\left(q_{n}, w_{n}\right)\left|z\left(p_{n}\right)\right|\right) \leqslant \psi\left(q_{n}, w_{n}\right)\left|z\left(p_{n}\right)\right|^{2} .
$$

Hence, we get
Corollary 1.3. Under the conditions (1.2) and

$$
\begin{equation*}
\psi\left(q_{n}, w_{n}\right) \max _{k=1, \ldots, n}\left|z_{k}\left(p_{n}\right)\right|<1, \tag{1.7}
\end{equation*}
$$

any $z(f)$ either satisfies the inequality $|z(f)|>1 / \psi\left(q_{n}, w_{n}\right)$, or there is a $z\left(p_{n}\right)$, such that

$$
\begin{equation*}
\left|z\left(p_{n}\right)-z(f)\right| \leqslant \frac{\psi\left(q_{n}, w_{n}\right)\left|z\left(p_{n}\right)\right|^{2}}{1-\psi\left(q_{n}, w_{n}\right)\left|z\left(p_{n}\right)\right|} \leqslant \frac{\left|z\left(p_{n}\right)\right|}{1-\psi\left(q_{n}, w_{n}\right)\left|z\left(p_{n}\right)\right|} . \tag{1.8}
\end{equation*}
$$

Furthermore, relation (1.6) gives

$$
\left|z\left(p_{n}\right)\right|-|z(f)| \leqslant \psi\left(q_{n}, w_{n}\right)|z(f)|\left|z\left(p_{n}\right)\right| .
$$

Hence,

$$
|z(f)| \geqslant\left(\psi\left(q_{n}, w_{n}\right)\left|z\left(p_{n}\right)\right|+1\right)^{-1}\left|z\left(p_{n}\right)\right| .
$$

This inequality yields the following result

Corollary 1.4. For a positive number R, let the relation

$$
R_{1} \equiv \frac{R}{\psi\left(q_{n}, w_{n}\right) \min _{K}\left|z_{k}\left(p_{n}\right)\right|+1}<\psi^{-1}\left(q_{n}, w_{n}\right)
$$

hold. In addition, let p_{n} have no zeros in the circle $\Omega(R)=\{z \in \mathbf{C}:|z| \leqslant R\}$. Then f has no zeros in the ring

$$
\left\{z \in \mathbf{C}: R_{1} \leqslant|z| \leqslant \psi^{-1}\left(q_{n}, w_{n}\right)\right\} .
$$

Below we will prove the inequality

$$
\begin{equation*}
\psi\left(q_{n}, w_{n}\right) \leqslant \sqrt{2 w_{n} \gamma_{n}^{-1}}, \tag{1.9}
\end{equation*}
$$

where

$$
\gamma_{n}=\ln \left(1 / 2+\sqrt{1 / 4+w_{n} / q_{n}^{2}}\right) .
$$

Due to (1.3) everywhere above we can replace $\psi\left(q_{n}, w_{n}\right)$ by the easily calculated quantity $\sqrt{2 v\left(p_{n}\right) \gamma_{n}^{-1}}$, if p_{n} is real.

2. PROOFS

Consider the entire function

$$
h(\lambda)=\sum_{k=0}^{\infty} \frac{b_{k} \lambda^{k}}{(k!)^{\rho}} \quad\left(\lambda \in \mathbf{C}, b_{0}=1, \rho>1 / 2\right)
$$

with complex, in general, coefficients, under the assumption

$$
\begin{equation*}
C_{h} \equiv \sum_{k=0}^{\infty}\left|b_{k}\right|^{2}<\infty . \tag{2.1}
\end{equation*}
$$

Put

$$
q \equiv\left[\sum_{k=1}^{\infty}\left|a_{k}-b_{k}\right|^{2}\right]^{1 / 2} .
$$

Let l^{2} be the Hilbert space of number sequences with the norm

$$
\|x\|=\left[\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}\right]^{1 / 2} \quad\left(x=\left(x_{k}\right) \in l^{2}\right) .
$$

Introduce in l^{2} operators A and B by virtue of the infinite matrices

$$
A=\left(\begin{array}{ccccc}
-a_{1} & -a_{2} & -a_{3} & -a_{4} & \cdots \\
1 / 2^{\rho} & 0 & 0 & 0 & \cdots \\
0 & 1 / 3^{\rho} & 0 & 0 & \cdots \\
0 & 0 & 1 / 4^{\rho} & 0 & \cdots \\
. & . & . & . & \cdots
\end{array}\right)
$$

and

$$
A=\left(\begin{array}{ccccc}
-b_{1} & -b_{2} & -b_{3} & -b_{4} & \cdots \tag{2.2}\\
1 / 2^{\rho} & 0 & 0 & 0 & \cdots \\
0 & 1 / 2^{\rho} & 0 & 0 & \cdots \\
0 & 0 & 1 / 4^{\rho} & 0 & \cdots \\
. & . & . & . & \cdots
\end{array}\right) .
$$

In addition, consider the $n \times n$ matrix

$$
A_{n}=\left(\begin{array}{cccccc}
-a_{1} & -a_{2} & -a_{3} & \cdots & -a_{n-1} & -a_{n} \\
1 / 2^{\rho} & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 / 3^{\rho} & 0 & \cdots & 0 & 0 \\
& \cdot & \cdot & \cdots & \cdot & \cdot \\
0 & 0 & 0 & \cdots & 1 / n^{\rho} & 0 \\
. & & & & &
\end{array}\right)
$$

The direct calculations show that $p_{n}(\lambda)=\operatorname{det}\left(U_{n}-\lambda A_{n}\right)$, where I_{n} is the unit $n \times n$-matrix. So the eigenvalues $\lambda_{k}\left(A_{n}\right)$ of A_{n} taken with their multiplicities, satisfy the relations $\lambda_{k}\left(A_{n}\right)=z_{k}^{-1}\left(p_{n}\right)(k=1, \ldots, n)$. In other words

$$
\sigma\left(A_{n}\right)=\left\{\mu \in \mathbf{C}: \mu=z_{k}^{-1}\left(p_{n}\right), k=1, \ldots, n\right\} .
$$

Here and below $\sigma(A)$ denotes the spectrum of an operator A. Denote by \tilde{A}_{n} the operator in l^{2} presented by matrix A_{n}. That is, $\tilde{A}_{n}=A_{n} \oplus 0$. Clearly, operators \tilde{A}_{n} converge in the operator norm of l^{2} to A and

$$
\sigma\left(\tilde{A}_{n}\right)=\sigma\left(A_{n}\right) \cup 0=\left\{\mu \in \mathbf{C}: \mu=z_{k}^{-1}\left(p_{n}\right), k=1, \ldots, n\right\} \cup 0 .
$$

Thanks to the continuity of isolated eigenvalues (Kato [4, p. 213]), for any finite k we have

$$
\lambda_{k}\left(A_{n}\right) \rightarrow \lambda_{k}(A) \in \sigma(A) \quad \text { as } \quad n \rightarrow \infty .
$$

Due to the continuous dependence of zeros of entire functions on its coefficients, $z_{k}\left(p_{n}\right) \rightarrow z_{k}(f)$ as $n \rightarrow \infty$. Therefore,

$$
\sigma(A)=\left\{\mu \in \mathbf{C}: \mu=z_{k}^{-1}(f), k=1,2, \ldots\right\} \cup 0 .
$$

Similarly,

$$
\sigma(B)=\left\{\mu \in \mathbf{C}: \mu=z_{k}^{-1}(h), k=1,2, \ldots,\right\} \cup 0,
$$

where $z_{k}(h), k=1,2, \ldots$, are the zeros of h with their multiplicities.
Furthermore, it is easy to see that $\|A-B\| \leqslant q$. Let I be the unit operator in l^{2}. Obviously,

$$
\begin{aligned}
& (I-z A)^{-1}-(I-z B)^{-1} \\
& \quad=z(I-z A)^{-1}(A-B)(I-z B)^{-1}\left(z^{-1} \notin \sigma(A) \cup \sigma(B)\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\|(I-z A)^{-1}\right\| \leqslant\left\|(I-z B)^{-1}\right\|+q|z|\left\|(I-z B)^{-1}\right\|\left\|(I-z A)^{-1}\right\| \\
& \quad=\left\|(I-z B)^{-1}\right\|+q\left\|\left(z^{-1} I-B\right)^{-1}\right\|\left\|(I-z A)^{-1}\right\| .
\end{aligned}
$$

So, if

$$
q\left\|\left(z^{-1} I-B\right)^{-1}\right\|<1,
$$

then

$$
\left\|(I-z A)^{-1}\right\| \leqslant\left\|(I-z B)^{-1}\right\|\left(1-q\left\|\left(z^{-1} I-B\right)^{-1}\right\|\right)^{-1} .
$$

Consequently, the operator

$$
\left(I z^{-1}-A\right)^{-1}=z(I-z A)^{-1}
$$

is bounded and thus $z^{-1} \notin \sigma(A)$. Hence, it follows that for any zero $z(f) \neq \infty$, one can write

$$
\begin{equation*}
q\left\|\left(z^{-1}(f) I-B\right)^{-1}\right\| \geqslant 1 . \tag{2.3}
\end{equation*}
$$

Furthermore, assume that for any regular λ,

$$
\begin{equation*}
\left\|(\lambda I-B)^{-1}\right\| \leqslant G\left(\rho^{-1}(B, \lambda)\right) \tag{2.4}
\end{equation*}
$$

where $G(x)(x \geqslant 0)$ is a continuous scalar-valued function positive and increasing on $[0, \infty)$ with the property $G(0)=0$, and $\rho(B, \lambda)$ is the distance between λ and $\sigma(B)$. If the set of all zeros of h is infinite, then by (2.4) for any regular point of B, there is a zero $z(h)$, such that

$$
\left\|(\lambda I-B)^{-1}\right\| \leqslant G\left(\left|\lambda-z^{-1}(h)\right|^{-1}\right)
$$

If the set of all zeros of h is finite with $\beta(h) \equiv \max _{k}\left|z_{k}(h)\right|$, then $\lambda=0$ is an isolated point of the spectrum of B and under the inequality $|\lambda| \leqslant 1 /(2 \beta(h))$, we have $\rho(B, \lambda)=|\lambda|$. Thus by virtue of relation (2.4), it can be written

$$
\left\|(\lambda I-B)^{-1}\right\| \leqslant G\left(|\lambda|^{-1}\right) .
$$

Now according to (2.3) we get the following result.
Lemma 2.1. Under conditions (1.2), (2.1), (2.4) any $z(f)$ either satisfies the inequality

$$
\begin{equation*}
G(|z(f)|) g \geqslant 1 \tag{2.5}
\end{equation*}
$$

or there is a $z(h)$, such that

$$
\begin{equation*}
q G\left(\left|z^{-1}(h)-z^{-1}(f)\right|^{-1}\right) \geqslant 1 . \tag{2.6}
\end{equation*}
$$

Corollary 2.2. Under conditions (1.2), (2.1), (2.4), let $r(q)$ be the unique positive root of the scaler equation

$$
\begin{equation*}
q G(1 / y)=1 \tag{2.7}
\end{equation*}
$$

Then any $z(f)$, either satisfies the inequality $|z(f)| \geqslant r^{-1}(q)$, or there is $z(h)$, such that

$$
\left|z^{-1}(h)-z^{-1}(f)\right| \leqslant r(q) .
$$

Indeed, since G increases, this result follows from (2.5), (2.6), and (2.7).
Lemma 2.3. Under conditions (1.2), (2.1), and (2.4) any zero $z(f)$ of f, either satisfies the inequality

$$
\sqrt{2} q|z(f)| \exp \left[w(h)|z(f)|^{2}\right] \geqslant 1,
$$

or there is a zero $z(h)$ of h, such that

$$
\sqrt{2} q\left|z^{-1}(h)-z^{-1}(f)\right|^{-1} \exp \left[w(h)\left|z^{-1}(h)-z^{-1}(f)\right|^{-2}\right] \geqslant 1,
$$

where

$$
w(h)=\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}-\left|z_{k}^{-1}(h)\right|^{2}+\zeta(2 \rho)-1 .
$$

Proof. We apply the following result (Gil' [1, p.53]). Let B be an arbitrary Hilbert-Schmidt operator. Then

$$
\left\|(B-I \lambda)^{-1}\right\| \leqslant \sum_{k=0}^{\infty} \frac{g^{k}(B)}{\sqrt{k!} \rho^{k+1}(B, \lambda)} \quad \text { for all regular } \quad \lambda
$$

where

$$
g(B)=\left(N^{2}(B)-\sum_{k=1}^{\infty}\left|\lambda_{k}(B)\right|^{2}\right)^{1 / 2}
$$

Here $\lambda_{k}(B), k=1,2, \ldots$, are the eigenvalues of B with their multiplicities and $N(B)$ is the Hilbert-Schmidt norm of B, i.e., $N^{2}(B)=\operatorname{Trace}\left(B B^{*}\right)$. By the Schwarz inequality,

$$
\begin{aligned}
& {\left[\sum_{k=0}^{\infty} \frac{g^{k}(B)}{\sqrt{k!} \rho^{k+1}(B, \lambda)}\right]^{2}} \\
& \quad=\left[\sum_{k=0}^{\infty} \frac{g^{k}(B)(\sqrt{2})^{k}}{(\sqrt{2})^{k} \sqrt{k!} \rho^{k+1}(B, \lambda)}\right]^{2} \leqslant 2 \rho^{-2}(B, \lambda) \exp \left[\frac{2 g^{k}(B)}{\rho^{2}(B, \lambda)}\right] .
\end{aligned}
$$

Thus, for an arbitrary Hilbert-Schmidt operator B,

$$
\begin{equation*}
\left\|(B-I \lambda)^{-1}\right\| \leqslant \sqrt{2} \rho^{-1}(B, \lambda) \exp \left[\frac{g^{2}(B)}{\rho^{2}(B, \lambda)}\right] \tag{2.8}
\end{equation*}
$$

In the considered case (2.2), we have

$$
N^{2}(B)=\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}+k^{-2 \rho}-1<\infty
$$

Therefore

$$
g^{2}(B)=\zeta(2 \rho)-1+\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}-\left|z_{k}^{-1}(h)\right|^{2}=w(h) .
$$

Thus (2.8) yields

$$
\left\|(B-\lambda I)^{-1}\right\| \leqslant \sqrt{2} \rho^{-1}(B, \lambda) \exp \left[\frac{w(h)}{\rho^{2}(B, \lambda)}\right] .
$$

Now the required result is due to Lemma 2.1.
Proof of Theorem 1.1. Put $b_{k}=0$ for $k>n$ and $b_{k}=a_{k}$ for $k \leqslant n$. Then $h(z)=p_{n}(z), q=q_{n}$ and $w(h)=w_{n}$. Now Lemma 2.3 implies the required result.

Proof of Inequality (1.3). Let the coefficient of p_{n} be real. Since

$$
\sum_{k=1}^{n}\left|z_{k}^{-1}\left(p_{n}\right)\right|^{2}=\sum_{k=1}^{n}\left|\lambda_{k}(B)\right|^{2} \geqslant \sum_{k=1}^{n} \lambda_{k}^{2}(B)=\text { Trace } B^{2}
$$

and

$$
\text { Trace } B^{2}=a_{1}^{2}-a_{2} 2^{1-\rho},
$$

it can be written

$$
\begin{aligned}
w\left(p_{n}\right) & =g^{2}(B) \leqslant \zeta(2 \rho)-1+\sum_{k=1}^{n} a_{k}^{2}-a_{1}^{2}+a_{2} 2^{1-\rho} \\
& =\sum_{k=2}^{n} a_{k}^{2}+\zeta(2 \rho)-1+a_{2} 2^{1-\rho}=v\left(p_{n}\right),
\end{aligned}
$$

as claimed.
The assertion of Theorem 1.2 follows from Corollary 2.2 and inequality (2.8).

Proof of Inequality (1.9). Equation (1.4) is equivalent to

$$
2 q_{n}^{2} x^{-2} \exp \left[\frac{2 w_{n}}{x^{2}}\right]=1
$$

Substitute in (1.4) the equality $y=2 w_{n} x^{-2}$. Then

$$
\frac{w_{n}}{q_{n}^{2}}=y e^{y} .
$$

Since $z \leqslant e^{z}-1(z \geqslant 0)$, the relation

$$
\frac{w_{n}}{q_{n}^{2}} \leqslant e^{2 y}-e^{y}
$$

holds. Consequently, $e^{y} \geqslant r_{1,2}$, where $r_{1,2}$ are the roots of the polynomial

$$
z^{2}-z-\frac{w_{n}}{q_{n}^{2}} .
$$

Hence, $y \geqslant \gamma_{n}$. This proves inequality (1.9).

3. EXAMPLE

Consider the function

$$
f(z)=c_{0}+c_{1} z+c_{2} z^{2}+l_{1} e^{-z h_{1}}+l_{2} e^{-z h_{2}} \quad\left(0 \leqslant h_{1}, h_{2}=\text { const }<1\right)
$$

with real coefficients $c_{0}, c_{1}, c_{2}, l_{1}, l_{2}$. As it is well known, such quasipolynomials play an essential role in the theory of differential-difference equations; cf. Hale [3], Kolmanovskii and Nosov [6], and Kolmanovskii and Myshkis [5]. Usually, stability conditions for quasipolynomials are investigated. But for many applications, estimates for the zeros of quasipolynomials are very important, e.g., Gil' [2, Chap. 9] and references therein. Theorem 1.1 allows us to derive estimates for the roots of quasipolynomials.

Without any loss of generality, assume that $c_{0}+l_{1}+l_{2}=1$. We have

$$
\begin{align*}
f(z)= & 1+\left(c_{1}-l_{1} h_{1}-l_{2} h_{2}\right) z+z^{2}\left(2 c_{2}+l_{1} h_{1}^{2}+l_{2} h_{2}^{2}\right) / 2 \\
& +\sum_{k=3}^{\infty} z^{k}\left[l_{1}\left(-h_{1}\right)^{k}+l_{2}\left(-h_{2}\right)^{k}\right](k!)^{-1} . \tag{3.1}
\end{align*}
$$

Rewrite this function in the form (1.1) with $\rho=1$, and

$$
\begin{aligned}
& a_{k}=(-1)^{k}\left[l_{1} h_{1}^{k}+l_{2} h_{2}^{k}\right] \quad(k \geqslant 3), \quad a_{1}=c_{1}-l_{1} h_{1}-l_{2} h_{2}, \\
& a_{2}=2 c_{2}+l_{1} h_{1}^{2}+l_{2} h_{2}^{2} .
\end{aligned}
$$

Put

$$
\begin{equation*}
p_{2}(\lambda)=1+a_{1} z+a_{2} z^{2} / 2 \tag{3.2}
\end{equation*}
$$

We have

$$
q_{2}^{2}=\sum_{k=3}^{\infty} l_{1}^{2} h_{1}^{2 k}+l_{2} h_{2}^{2 k}=l_{1}^{2} h_{1}^{6}\left(1-h_{1}^{2}\right)^{-1}+l_{2}^{2} h_{2}^{6}\left(1-h_{2}^{2}\right)^{-1}
$$

and $v\left(p_{2}\right)=a_{2}^{2}+a_{2}+\zeta(2)-1$. So due to Theorem 1.1 and relation (1.3), we can assert that all the zeros of f are in the set $\bigcup_{j=0}^{2} \Omega_{j}$, where

$$
\Omega_{0}=\left\{z \in \mathbf{C}: q_{2} \sqrt{2}|z| \exp \left[v\left(p_{2}\right)|z|^{2}\right] \geqslant 1\right\}
$$

and

$$
\begin{aligned}
\Omega_{j}=\{ & \left\{z \in \mathbf{C}: q_{2} \sqrt{2}\left|z_{j}^{-1}\left(p_{2}\right)-z^{-1}\right|^{-1}\right. \\
& \left.\exp \left[\frac{v\left(p_{2}\right)}{\left|z_{j}^{-1}\left(p_{2}\right)-z^{-1}\right|^{2}}\right] \geqslant 1\right\} \quad(j=1,2) .
\end{aligned}
$$

Besides, $z_{1}\left(p_{2}\right), z_{2}\left(p_{2}\right)$ are the roots of polynomial (3.2).

REFERENCES

1. M. I. Gil', "Norm Estimations for Operator-Valued Functions and Applications," Dekker, New York, 1995.
2. M. I. Gil', "Stability of Finite and Infinite Dimensional Systems," Kluwer Academic, Boston/Dordrecht/London, 1998.
3. J. K. Hale, "Theory of Functional Differential Equations," Springer-Verlag, New York, 1977.
4. T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, New York, 1966.
5. V. B. Kolmanovskii and A. D. Myshkis, "Applied Theory of Functional Differential Equations," Kluwer Academic, Dordrecht, 1992.
6. V. B. Kolmanovskii and V. K. Nosov, "Stability of Functional differential Equations," Academic Press, New York, 1986.
7. P. C. Rosenbloom, Perturbation of zeros of entire functions, I, J. Approx. Theory 2 (1969), 111-126.
